I fight anti-GMO fears in Africa to combat hunger

As a child, I remember feeling hungry most of the time. Growing up in rural Tanzania, I walked to school barefoot and most of the time had one meal a day. After school, I helped my mother with various farming chores, including feeding the animals, weeding, harvesting and planting. I often heard my mother express concerns about the lack of ways to protect our crops from drought, pests and diseases. I wanted to help my mother but was too young to understand what the solution might be.

In my undergraduate genetics class, I completed a term paper on the domestication of maize. I was surprised to discover that ancestral maize did not produce the type of kernels we consume today. It took humans thousands of years of deliberate selection to breed a maize plant capable of producing edible seeds. Subsequently, more work by plant breeders helped improve the genetics of maize for higher yield and tolerance to environmental stresses. This was fascinating to me, because when plant breeders interbreed plants, large sections of parental genetic material pass on to new varieties, but the function of many genes that end up in the crops we grow and consume remain unknown.

I am a plant physiologist at Iowa State University and director of the Plant Breeding Education in Africa Program. I believe that Africa deserves cutting-edge technologies, including genetic engineering to develop stress-tolerant crop varieties and more nutritious staple crops to improve human health. However, the anti-GMO news and campaign across the globe make me wonder whether improved crop varieties would ever reach small stakeholder farmers like my mother.

Humanitarian work in Africa

When I was working for UNICEF in Zimbabwe from 1999-2000, I met a young single mother with several children. Her village was in an area of the country that was facing a devastating drought and many families needed food. The purpose of my meeting with the woman was to assess her food security situation and whether she qualified for food aid.

Near the conclusion of my visit, I saw her little girl, probably 3 or 4 years old, sitting on the ground, eating porridge, probably the only meal she would have that day. The little girl did not appear too bothered by my presence, nor the flies that swarmed her plate. I was surprised she seemed happy. It was overwhelming for me to think that there were thousands of children in the area facing a similar situation. That day I dedicated my life to fight hunger and poverty.

National Biosafety Management Agency Director-General Rufus Ebegba speaks during a press briefing, denying the importation or release of any GMO ‘poison’ rice into the Nigerian market in Abuja. REUTERS/Afolabi Sotunde

Graduate education and research

My doctoral training helped me understand the scientific process and biotechnology techniques for inserting new genes more precisely into plants. My research on plant insect defense genes involved gene cloning and creation of genetically modified plants. During my time in the laboratory, I often thought of my mother and the crop production challenges she faced. I felt that genetic engineering crops to increase resistance to insects could benefit small stakeholder farmers. I was hopeful that my research could benefit Africa.

Scientific research suggests that climate change will have a negative effect on yields, especially in Africa. In addition, millions in Africa rely on starchy crops as their staple foods and are more prone to mineral and protein deficiencies.

Scientists debunk GMO myths

In my opinion, scientists need to share more of the scientific facts about GMOs and debunk the myths. In many African countries, the root cause for resistance to GMO crops is lack of public awareness of the scientific principles and benefits of biotechnology.

To help increase awareness, my team analyzed dozens of research articles on risk assessment of transgenic maize containing the Bt insect resistance gene. Bt maize is a transgenic crop that contains the Bt gene from the soil bacterium Bacillus thuringiensis. The Bt gene helps maize fight off insect pests such as the fall armyworm, Spodoptera frugiperda.